Psoralen-induced DNA interstrand cross-links block transcription and induce p53 in an ataxia-telangiectasia and rad3-related-dependent manner.
نویسندگان
چکیده
Psoralen plus UVA light (PUVA) is commonly used to treat psoriasis, a common skin disorder associated with rapid proliferation of cells. PUVA exerts its antiproliferative activity through formation of DNA monoadducts and interstrand cross-links (ICLs). However, this treatment may lead to skin malignancies as a direct result of inducing carcinogenic DNA damage. Inactivation of the p53 tumor suppressor gene is an important event in the development of skin cancer. p53 is rapidly phosphorylated and stabilized in response to DNA damage, and the induction of apoptosis by p53 is an important mechanism by which p53 exerts its tumor-suppressive activity. To better understand the mechanism by which PUVA treatment induces p53, we exposed human skin fibroblasts with PUVA under conditions that differentially produce monoadducts and ICLs and found that psoralen-induced ICLs induced phosphorylation of the Ser-15 site of p53 and apoptosis much more effectively than psoralen-induced monoadducts. The induction of p53 phosphorylation by psoralen ICLs did not require factors believed to be involved in the repair of psoralen ICLs [xeroderma pigmentosum (XP)-A, XP-C, XP-F, Cockayne's syndrome-B, Fanconi anemia] but did require the ataxia-telangiectasia and Rad3-related but not the ataxia-telangiectasia mutated kinase. Psoralen-induced ICLs blocked transcription and replication more efficiently than monoadducts, and induction of p53 and apoptosis correlated with doses causing interference with transcription rather than DNA replication. Our finding that cells underwent apoptosis preferentially during S-phase suggests that the combined blockade of transcription and DNA replication by psoralen ICLs during S-phase elicits a strong apoptotic response.
منابع مشابه
Decarbamoyl mitomycin C (DMC) activates p53-independent ataxia telangiectasia and rad3 related protein (ATR) chromatin eviction
Interstrand crosslinks induce DNA replication fork stalling that in turn activates the ATR-dependent checkpoint and DNA repair on nuclear chromatin. Mitomycin C (MC) and Decarbamoyl Mitomycin C (DMC) induce different types of DNA crosslinks with DMC being a more cytotoxic agent. We previously reported that the novel DMC induced β-interstrand DNA crosslinks induce a p53-independent form of cell ...
متن کاملDesigner enediynes generate DNA breaks, interstrand cross-links, or both, with concomitant changes in the regulation of DNA damage responses.
The ability of the radiomimetic anticancer enediyne C-1027 to induce ataxia-telangiectasia mutated (ATM) and ATM and Rad3-related (ATR)-independent damage responses was discovered to reside in its unique ability to concurrently generate robust amounts of double-strand breaks (DSBs) and interstrand cross-links (ICLs) in cellular DNA. Furthermore, a single substitution to the chromophore's benzox...
متن کاملThe Translesion Polymerase ζ Has Roles Dependent on and Independent of the Nuclease MUS81 and the Helicase RECQ4A in DNA Damage Repair in Arabidopsis.
DNA polymerase zeta catalytic subunit REV3 is known to play an important role in the repair of DNA damage induced by cross-linking and methylating agents. Here, we demonstrate that in Arabidopsis (Arabidopsis thaliana), the basic polymerase activity of REV3 is essential for resistance protection against these different types of damaging agents. Interestingly, its processivity is mainly required...
متن کاملDNA repair defects channel interstrand DNA cross-links into alternate recombinational and error-prone repair pathways.
The repair of psoralen interstrand cross-links in the yeast Saccharomyces cerevisiae involves the DNA repair groups nucleotide excision repair (NER), homologous recombination (HR), and post-replication repair (PRR). In repair-proficient yeast cells cross-links induce double-strand breaks, in an NER-dependent process; the double-strand breaks are then repaired by HR. An alternate error-prone rep...
متن کاملThe Colibactin Genotoxin Generates DNA Interstrand Cross-Links in Infected Cells
Colibactins are hybrid polyketide-nonribosomal peptides produced by Escherichia coli, Klebsiella pneumoniae, and other Enterobacteriaceae harboring the pks genomic island. These genotoxic metabolites are produced by pks-encoded peptide-polyketide synthases as inactive prodrugs called precolibactins, which are then converted to colibactins by deacylation for DNA-damaging effects. Colibactins are...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular pharmacology
دوره 75 3 شماره
صفحات -
تاریخ انتشار 2009